
ava i lab le at www.sc iencedi rec t . com

journa l homepage : www.e lsev ie r . com/ loca te /cose

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 4 6 9 – 4 7 3
Infection, imitation and a hierarchy of computer viruses

Zhi-hong Zuo*, Qing-xin Zhu, Ming-tian Zhou

College of Computer Science and Engineering, University of Electronic Science & Technology of China, Chengdu, Sichuan 610054, PR China

a r t i c l e i n f o

Article history:

Received 19 May 2005

Revised 12 October 2005

Accepted 6 February 2006

Keywords:

Computer viruses

Infection

Imitation

Complete sets

Hierarchy

a b s t r a c t

Infection is an essential character of computer viruses. In addition, computer viruses can

also imitate the behavior of infected programs in some ways in order to hide themselves. In

this paper we define infection and imitation mathematically, and classify computer viruses

into 3 types according to their different imitation behaviors. Furthermore, we give some re-

sults about the degree of unsolvability of each type of computer viruses. We show that the

set of type 0 and type 1 computer viruses is P2-complete, while the set of type 2 computer

viruses is P3-complete.

ª 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The first abstract theory of computer viruses is the viral set

theory given by Cohen, based on the Turing machine (Cohen,

1989, 1994). A viral set is defined by (M, V) where M is a Turing

machine and V is a non-empty set of programs on M. Each

v ˛ V is called a computer virus and satisfies the following con-

ditions: if it is contained in the tape at time t, then there is

a time t0 and a v0 ˛ V such that v0 is not contained in the tape

at time t, but contained in the tape at time t0. The most impor-

tant one of Cohen’s theorems is about the undecidability of

computer viruses (Cohen, 1989, 1994).

In a different approach, Adleman (1988) developed an

abstract theory of computer viruses based on recursive func-

tions. In his definition a virus is a total recursive function v

which applies to all programs x (the Gödel numberings of pro-

grams) such that v(x) has characteristic behaviors of computer

viruses such as injury, infection and imitation. Furthermore,

Adleman (1988) proved that the set of computer viruses is

P2-complete.

There are some shortcomings in the computer virus

models given by Cohen and Adleman. Several improvements

* Corresponding author.
E-mail address: zhzuo@uestc.edu.cn (Z.-hong Zuo).
0167-4048/$ – see front matter ª 2006 Elsevier Ltd. All rights reserv
doi:10.1016/j.cose.2006.02.001
have been proposed so far (Thimbleby et al., 1999; Jian et al.,

2003; Chang and Shao-Ren, 2001; Zuo and Zhou, 2004). In a

recent paper (Zuo and Zhou, 2004), we improved Adleman’s

definitions of computer viruses to comply with the common

understanding of computer virus, and proved that the set of

computer viruses with the same kernel is P2-complete. In gen-

eral they formed a S3-complete set. We have also proved the-

oretically the existence of some computer viruses that have

not been discovered yet (for example, the polymorphic viruses

with infinite forms). In another paper (Zhi-hong et al., 2005),

we investigated the time complexity of computer viruses.

Infection is the key character of computer viruses. In addi-

tion, computer viruses often imitate the behavior of the

infected programs in some ways in order to hide themselves.

Different imitation behaviors lead to different mathematical

features. In this paper we define infection and imitations

mathematically, obtain a hierarchical structure of computer

viruses according to their different imitation behaviors and

prove the strict inclusions.

The structure of this paper is as follows: in Section 2 we

introduce some basic concepts and notations; in Section 3

we give the definitions of infection, imitation and a hierarchical
ed.

mailto:zhzuo@uestc.edu.cn
http://www.elsevier.com/locate/cose

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 4 6 9 – 4 7 3470
structure of computer viruses. In Section 4 we give some

important theorems and prove them. In Section 5, we give a

brief summary and some discussion for these results.

2. Preliminaries

We describe some notations below.

LetN be the set of all natural numbers and S be the set of all

finite sequences of natural numbers. For s1; s2;.; sn ˛ S, let

Cs1; s2;.; snD denote a computable injective function from Sn

to N and its inverse is also computable. If f : N/N is a partial

function, for s1; s2;.; sn ˛ S, we write fðs1; s2;.; snÞ instead of

fðCs1; s2;.; snDÞ. Similarly, for i1; i2;.; in ˛N, let Ci1; i2;.; inD de-

note a computable injective function from N
n to N, satisfying

Ci1; i2;.; inD � im for all 1�m� n, and its inverse is also com-

putable. We also use fði1; i2;.; inÞ to represent fðCi1; i2;.; inDÞ.
For a sequence p ¼ ði1; i2;.; ik;.; inÞ˛ S, let p(i) denote its ith

element, and x ˛s p represent that x is in the sequence p, i.e.,

x¼ p(i) for some i. For s1; s2;.; sn ˛ S, x ˛sðs1; s2;.; snÞmeans x

˛ s si for some 1� i� n. Let p[jk/ik] denote the sequence obtained

by replacing ik with jk in p, i.e., p
�
jk=ik

�
¼
�
i1; i2;.; jk;.; in

�
. If v is

a computable function, p[v(ik)/ik] is simply written as p½vð ik Þ�. If

more than one element in p is replaced or evaluated by some

computable functions, we write the result as p
�
jk1
=ik1

; jk2
=ik2

;

.; jkl
=ikl

�
or p

�
v1

�
ik1

�
;v2

�
ik2

�
;.;vl

�
ikl

��
, respectively.

Adopting Adleman’s (1988) notations, let fP(d, p) denote

a function computed by a computer program P in the running

environment (d, p) where d represents data (including clock,

spaces of diskettes and so on) and p represents programs (in-

cluding operating systems) stored on computers. If the index

(the Gödel numbering) of P is e, the function is also denoted

by fe(d, p). The domain and range are denoted by We and Ee, re-

spectively. If h is a recursive function, we also use the symbols

Wh and Eh for its domain and range. It is worth noting that

there is no essential distinction between d and p, as in the

case of Von Neumann machines. In this paper we use the

symbol (d, p) just for easier understanding.

3. Definitions of infection, imitation, and the
hierarchy of computer viruses

In the following we give definitions of infection and imitation

first, and then derive the hierarchy structure for computer

viruses.

A computer virus can be viewed as a total recursive func-

tion v which applies to every program i and obtains its infected

form v(i) such that v(i) can infect other programs (or MBR as

well as some documentations) under some conditions

(Adleman, 1988). In more technical terms, an infected pro-

gram v(i), when given some input (or environments) (d, p), its

output fv(i)(d, p) should contain some other infected programs

v(x). It leads to the following definition of infection.

Definition 1. (Infection) A total recursive function v is said to

be infective if it satisfies

ci
�

WisB/dCd; pD˛WvðiÞ

�
dx
�

vðxÞ˛sfvðiÞðd;pÞ
���

: (1)
Imitation is a property upon which computer viruses rely

to behave like the original programs. It is not indispensable

for computer viruses, but most currently found computer

viruses do have imitation property.

Definition 2. (Imitation) A total recursive function v is said to be

imitative if it satisfies

ci
���Wi

�� > 2/dCd; pD˛WiXWvðiÞ

�
fvðiÞðd;pÞ ¼ fiðd;pÞ

��
: (2)

Imitation property makes the infected program v(i) behave

in some computations like the original program i, i.e., there

exist some environments (d, p), fv(i)(d, p)¼ fi(d, p).

Definition 3. (N-Imitation) A total recursive function v is said to

be N-imitative if it satisfies

ci
�

Wi is infinite/dN
Cd;pD˛WiXWvðiÞ

�
fvðiÞðd; pÞ ¼ fiðd;pÞ

��
;

(3)

where symbol dN means existing infinitely many.

N-Imitation property not only requires the infected

program v(i) behave in some computations like the original

program i, but also requires infinitely many of these

computations.

Definition 4. (Computer virus) A computer virus is a total a

recursive function v satisfying the following conditions:

(1) v has infection property, or

(2) v has both infection and imitation property, or

(3) v has both infection and N-imitation property.

Computer viruses satisfying the above conditions (1), (2) or

(3) are called type 0, type 1 or type 2 viruses, respectively. The

set of type 0, type 1 and type 2 viruses are denoted by V0, V1

and V2, respectively. Obviously V0 J V1 J V2.

4. Main results

In this section we prove our main results, using the traditional

notations and symbols of recursive function theory (Rogers,

1967; Soare, 1987).

Proposition 5. ‘‘v is infective’’ is a P2-predicate.

Proof. From Definition 1, it follows that

‘‘v is infective’’

5ci
�

WisB/dCd;pD˛WvðiÞ

�
dx
�

vðxÞ˛sfvðiÞðd;pÞ
���

(4)

5ci
�
ðWi ¼ BÞn

�
dCd;pD˛WvðiÞ

�
dx
�

vðxÞ˛sfvðiÞðd; pÞ
����

: (5)

Since

Wi ¼ B5cx:x;Wi (6)

x˛sfyðzÞ5di
�

x ¼ fyðzÞðiÞ
�
; (7)

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 4 6 9 – 4 7 3 471
we know that ‘‘Wi¼B’’ and ‘‘x ˛s fy(z)’’ are a P1-predicate and

a S1-predicate, respectively. Because ‘‘x ˛ Wy’’ is also a S1-

predicate (Rogers, 1967), ‘‘v is infective’’ is a P2-predicate. ,

Proposition 6. ‘‘v is imitative’’ is a P2-predicate.

Proof. From Definition 2, it follows that

‘‘v is imitative’’

5ci
�
jWij > 2/dCd;pD˛WiXWvðiÞ

�
fvðiÞðd; pÞ ¼ fiðd;pÞ

��
(8)

5ci
�
ðjWij � 2Þn

�
dCd;pD˛WiXWvðiÞ

�
fvðiÞðd;pÞ ¼ fiðd; pÞ

���
:

(9)

Since

jWij > 25dx; y; z˛Wiðxsy^ysz^xszÞ; (10)

we know that ‘‘jWij> 2’’ is a S1-predicate, hence ‘‘jWij � 2’’ is

a P1-predicate. Since ‘‘x ˛ Wy’’ is a S1-predicate, ‘‘v is imita-

tive’’ is a P2-predicate. ,

Proposition 7. ‘‘v is N-imitative’’ is a P3-predicate.

Proof. From Definition 3, it follows that

‘‘v is N-imitative’’

5ci
�

Wi is infinite/dN
Cd; pD˛WiXWvðiÞ

�
fvðiÞðd;pÞ ¼ fiðd;pÞ

��

(11)

5ci
�
ðWi is finiteÞn

�
cxdCd;pD˛WiXWvðiÞ

�
ðCd;pD> xÞ

^
�

fvðiÞðd;pÞ ¼ fiðd;pÞ
����

: ð12Þ

Since ‘‘Wi is finite’’ is a S2-predicate (Rogers, 1967), and

‘‘x ˛ Wy’’ is a S1-predicate, ‘‘v is N-imitative’’ is a P3-

predicate. ,

In the proofs of our main results, we also need the follow-

ing lemma.

Lemma 8. For any non-empty recursively enumerable set R, there is

a recursive function J(e, y), such that Rng(ly.J(e, y))¼We
S

R for

any e. The set is also written as Ee
R.

Proof. Let R¼ Rng(g), here g is a recursive function. Define

fðe; x;nÞ ¼

8<
:

gðsÞ; if n ¼ 2sþ 1
x; if n ¼ 2s; x˛We;sþ2 �We;s

gð0Þ; otherwise
(13)

where We,s is defined as in Soare (1987). Clearly f(e, x, n) is a

total recursive function. Let J(e, y)¼ f(e, l(y), r(y)), we have

the conclusion. ,

Theorem 9. V0 and V1 are P2-complete sets.

Proof. Since

v˛V05v is infective (14)
v˛V15ðv˛V0Þ^ðv is imitativeÞ; (15)

by Propositions 6 and 7, we know that V0 and V1 are P2-sets.

Let A be any P2-set, R(x, y, z) be the recursive predicate

satisfying x ˛ A 5 cydzR(x,y,z). Let a be an integer, assume

R¼ {a} and by Lemma 8 we have J(e,y). Let b¼J(i, my(J

(i, y) s a)). Clearly b is a recursive function of i. For a given

number m, define

fði;k;x;Cd;pDÞ¼

8>><
>>:

Cd;p;fkðmÞD; ifððCd;pD¼aÞnðCd;pD¼bÞÞ
^ðcy< Cd;pDdzRðx;y;zÞÞ

fiðd;pÞ; if
�
Cd;pD˛Ea

i

�
^ðcy< Cd;pDdzRðx;y;zÞÞ

undefined; otherwise

(16)

f(i, k, x, Cd, pD) can be computed by the following procedure.

Given (i, k, x, Cd, pD), compute Jði; 0Þ;Jði;1Þ;. starting from 0.

Let Cd, pD¼J(i, j), when a value of Cd, pD is computed, we com-

pute the sequence Rðx;0;0Þ;.;Rðx; Cd; pD;0Þ;R.ðx; 0;1Þ;.;

Rðx; Cd; pD;1Þ;.. If for every y< Cd, pD there is a z such that the

value of R(x, y, z) is 1 (true), then check if Cd, pD is equal to a or

b (provided b exists); if equal, the procedure outputs Cd, p,

fk(m)D; otherwise outputs fi(d, p); in other situations (including

the case where b does not exist), the procedure does not termi-

nate, that is, f(i, k, x, Cd, pD) is undefined. By Church’s thesis, f(i, k,

x, Cd, pD) is a recursive function.

By s–m–n theorem, there exists a total recursive function

b(i, j, k) satisfying

fbði;k;xÞðd;pÞ ¼

8>><
>>:

Cd;p;fkðmÞD; ifððCd;pD¼ aÞnðCd;pD¼ bÞÞ
^ðcy< Cd;pDdzRðx;y;zÞÞ

fiðd;pÞ; if
�
Cd;pD˛Ea

i

�
^ðcy< Cd;pDdzRðx;y;zÞÞ

undefined; otherwise

(17)

By the recursion theorem with parameters, there exists a

total recursive function n(x) such that fn(x)(i)¼ b(i, n(x), x), hence

ffnðxÞðiÞðd;pÞ¼

8>><
>>:

Cd;p;fnðxÞðmÞD; ifððCd;pD¼aÞnðCd;pD¼bÞÞ
^ðcy< Cd;pDdzRðx;y;zÞÞ

fiðd;pÞ; if
�
Cd;pD˛Ea

i

�
^
�
cy< Cd;pDdzRðx;y;zÞ

�
undefined; otherwise

(18)

If x ˛ A, then cydzR(x, y, z), therefore

ffnðxÞðiÞðd;pÞ¼

8<
:

Cd;p;fnðxÞðmÞD; ifðCd;pD¼aÞnðCd;pD¼bÞ
fiðd;pÞ; ifCd;pD˛Ea

i

undefined; otherwise
(19)

For any i, if a ˛ Wi or b ˛ Wi, in both cases

fnðxÞðmÞ˛sffnðxÞðiÞðd;pÞ, i.e., fn(x) is infective. Moreover, assume

jWij> 2, then jWi� {a, b}j> 0. From Eq. (19), we have

ffnðxÞðiÞðd;pÞ¼fiðd;pÞ for any Cd, pD ˛ Wi� {a, b}, i.e., fn(x) is imita-

tive. Hence, for any x ˛ A, n(x) ˛ V1.

If x ; A, then dycz:R(x, y, z). Let y0 be an integer such that

cz:R(x, y0, z), and let Wc¼ {Cd, pD:Cd, pD> y0}, for any Cd, pD ˛ Wc,

we have that

y0 < Cd; pD0dy < Cd;pDcz:Rðx; y; zÞ: (20)

Thus ffnðxÞðcÞðd; pÞ is undefined, that is, for any m,

fnðxÞðmÞ;ffnðxÞðcÞðd;pÞ. Hence n(x) is not infective, so that

n(x) ; V0.

In conclusion, A �m

�
V1;V0

�
. Hence V0 and V1 are P2-

complete sets. This completes the proof of the theorem. ,

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 4 6 9 – 4 7 3472
Theorem 10. V2 is a P2-complete set.

Proof. Since v ˛ V2 5 v ˛ V0^ ‘‘v is N-imitative’’, by Theorem 9

and Proposition 7 V2 is a P3-set.

Let A be any P3-set, hence there is a S2-predicate R(x, y)

such that x ˛ A 5 cyR(x, y). Since the set {x: Wx is finite} is

S2-complete, there is a recursive function g(x, y) satisfying

x ˛ A 5 cy(Wg(x, y) is finite).

For any integer a, let R¼ {a} in Lemma 8 we get the function

J(e, y). For a given i, let

b1 ¼ Jði;myðJði; yÞsaÞÞ; (21)

b2 ¼ Jði;myððJði; yÞsaÞ^ðJði; yÞsbÞÞÞ: (22)

It is obvious that b1 and b2 are recursive functions with

respect to i, and a s b1 s b2.

Given m, define

fði; k; x; Cd;pDÞ ¼

8>><
>>:

Cd; p;fkðmÞD; ifðCd;pD ¼ aÞnðCd;pD ¼ b1Þ
fiðd;pÞ; ifCd;pD ¼ b2

fiðd;pÞ; ifcy � iðJðgðx; yÞ; Cd; pDÞ ¼ aÞ
undefined; otherwise

(23)

f(i, k, x, Cd, pD) can be computed by the following procedure.

Given (i, k, x, Cd, pD), first compute b1 and b2. If Cd, pD equals

a or b1 (provided b1 exists), then compute Cd, p, fk(m)D; if Cd, pD

equals b2 (provided b2 exists), then compute fi(d, p); otherwise

compute J(g(x, 0), Cd, pD), J(g(x, 1), Cd, pD), ., J(g(x, i), Cd, pD), if

all the values of the sequence are equal to a, then compute

fi(d, p); for any other cases (including the case when b1 and

b2 do not exist), f(i, k, x, Cd, pD) are undefined. By Church’s the-

sis, f(i, k, x, Cd, pD) is a recursive function.

Similar to Theorem 9, there exists a recursive function n(x)

satisfying

ffnðxÞðiÞðd; pÞ ¼

8>><
>>:

Cd;p;fnðxÞðmÞD; ifðCd;pD ¼ aÞnðCd; pD ¼ b1Þ
fiðd; pÞ; ifCd;pD ¼ b2

fiðd; pÞ; ifcy � iðJðgðx; yÞ; Cd; pDÞ ¼ aÞ
[; otherwise

(24)

and n(x) is both infective and imitative.

If x ˛ A, then for any i, Wg(x, i) is finite. By the definition of

J(e, y), the function lz. J(g(x, i), z) does not equal a for finitely

many z. Hence for all y� i, the function lz.J(g(x, i), z) does not

equal a only for finitely many z. Therefore if Wi is an infinite

set, there are infinitely many Cd, pD ˛ Wi satisfying cy� i(F(g

(x, y), Cd, pD)¼ a), i.e., ffnðxÞðiÞðd;pÞ ¼ fiðd; pÞ. So that n(x) ˛ V2.

If x ; A, there exists a y0 such that Wg(x, y) is an infinite set.

Let T¼ {Cd, pD:dy< y0(J(g(x, y), Cd, pD) s a)}. Clearly T is an infin-

ite recursively enumerable set. Let c> y0 and Wc¼ T, Cd, pD ˛ Wc

and does not equals b2. If ffnðxÞðcÞðd;pÞ ¼ fcðd; pÞ, from Eq. (24)

we have

cy < cðJðgðx; yÞ; Cd;pDÞ ¼ aÞ0cy < y0ðJðgðx; yÞ; Cd;pDÞ ¼ aÞ:
(25)

Meanwhile, by the definition of set T, we have

Cd;pD˛T5dy � y0ðJðgðx; yÞ; Cd; pDÞsaÞ: (26)

That lead to a contradiction. Therefore, though Wc is an

infinite set, only b2 ˛ Wc can satisfy ffnðxÞðcÞðb2Þ ¼ fcðb2Þ. Hence

we have n(x) ; V2 for x ; A.

In conclusion, A�m V2, so V2 is a P3-complete set. ,
Because V2 is a P3-complete set while V1 is a P2-complete

set, hence V1 s V2. Given m, define a function v such that (by

recursion theorem)

fvðiÞðd;pÞ ¼ Cd;p; vðmÞD: (27)

Clearly v ˛ V0 but v ; V1, hence we have the following

theorem.

Theorem 11. V0 I V1 I V2

5. Discussion

Definition 1 is a reasonable description for infective property

of computer viruses. But it is not the strongest definition.

The strongest definition implies that no matter whether Wi

is empty or not, program fv(i) is infective. That is,

cidCd;pD˛WvðiÞ

�
dx
�

vðxÞ˛sfvðiÞðd; pÞ
��
: (28)

Under such condition we can prove that V1 is P2-complete

and V2 is P3-complete, using the same arguments as in Theo-

rems 9 and 10. But to prove that whether V0 is P2-complete or

not is still an open problem.

The condition ‘‘Wi is not empty’’ in Definition 1 is replaced

by the condition ‘‘jWij> 2’’ in Definition 2. If we only consider

imitative property, we may use the condition ‘‘Wi is not

empty’’. If we consider infective property together with imita-

tive property, this is not a proper condition for if jWij ¼ 1 the

program fv(i) cannot satisfy both infective and imitative prop-

erty. Although ‘‘jWij> 1’’ is the best substitute for the condi-

tion ‘‘Wi is not empty’’, we do not know if V1 is P2-complete

under this condition.

The conclusion of Theorem 9 complies to some extent with

Adleman’s result on computer viruses (Adleman, 1988). That

is, the decision problems for type 0 and type 1 computer

viruses are unsolvable, and the degree of unsolvability is 2

(that is, solving these problems are harder than solving halt-

ing problem). Theorem 10 shows that the decision problem

of type 2 viruses is even harder than that of type 0 and type

1 computer viruses. Most computer viruses currently found

are type 2 viruses. They are both infective and imitative, imi-

tating infected programs in infinitely many computations

(or environments).

In the definition of computer viruses (Definition 4), infective

property is a necessary condition for a computer virus. Some

illegal programs (malicious programs) which do not have in-

fective property are also called computer viruses in a less strict

sense. These situations are not included in that definition.

Acknowledgements

The authors wish to thank the referees for their helpful

comments that improved the article greatly.

r e f e r e n c e s

Adleman LM. An abstract theory of computer viruses. In:
Goldwasser S, editor. Advances in cryptology – CRYPTO’88.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 4 6 9 – 4 7 3 473
Lecture notes in computer science, vol. 403. Berlin: Springer-
Verlag; 1988. p. 354–74.

Chang T, Shao-Ren Z. Computational model of computer virus.
Chinese Journal of Computers 2001;24(2):158–63.

Cohen F. Computational aspects of computer viruses. Computers
& Security 1989;8(1):325–44.

Cohen F. A short course on computer viruses. Wiley; 1994.
Jian W, Chao-Jing T, Quan Z. A computer viruses’ infection

model based on an expanded universal Turing machine.
Journal of Computer Research and Development 2003;40(9):
1300–6.

Rogers HJ. Theory of recursive functions and effective comput-
ability. McGraw-Hill; 1967.

Soare RI. Recursively enumerable sets and degrees. Springer-
Verlag; 1987.

Thimbleby H, Anderson S, Cairns P. A framework for modelling
trojans and computer virus infection. Computer Journal 1999;
41:444–58.

Zhi-hong Z, Qing-xing Z, Ming-tian Z. On the time complexity of
computer viruses. IEEE Transaction on Information Theory
2005;51(8):2962–6.

Zuo Z, Zhou M. Some further theoretical results about computer
viruses. Computer Journal 2004;47(6):625–33.

Zhi-hong Zuo received the M. Eng. degree in computer

software and a Ph.D. degree in computer science both from

College of Computer Science and Engineering, University of

Electronic Science and Technology of China. Currently he is

an associate professor in the college and has published more
than 20 journal papers and conference presentations. His

research interests are in information security, semantic web

and natural language processing.

Qing-xin Zhu received B. Sc. degree from Sichuan Normal Uni-

versity and M. Sc. degree from Beijing Institute of Technology,

China. He received M. Sc. degree from Carleton University,

Ottawa, ON, Canada, and Ph.D. degree from Ottawa University,

Ottawa, ON, Canada. He became a faculty member of the Uni-

veristy of Electronic Science and Technology of China (UESTC)

in 1998. He is now a professor of College of Computer Science

and Engineering, UESTC. His research interests include net-

work security, computer vision, optimal search and optimal

control, and bioinfomatics.

Ming-tian Zhou received E.E.B.S. degree from Harbin Insti-

tute of Technology, Harbin, China in 1962. He became a

faculty member at the University of Electronic Science and

Technology of China (UESTC) in 1962. He is now a professor

of College of Computer Science and Engineering, UESTC.

He has published 13 books and more than 200 papers. His

research interests include network computing, computer

network, middleware technology, and network and

information security. Prof. Zhou is a fellow of China Institute

of Electronics, and a Senior Member of Federation of China

Computer.

	Infection, imitation and a hierarchy of computer viruses
	Introduction
	Preliminaries
	Definitions of infection, imitation, and the �hierarchy of computer viruses
	Main results
	Discussion
	Acknowledgements
	References

